REVISED NMR ASSIGNMENTS FOR THE CHOLECYSTOKININ ANTAGONIST ASPERLICIN

HAO H. SUN*, STEPHEN J. BYARD[†] and RAYMOND COOPER

Sterling Winthrop Pharmaceuticals Research Division, 25 Great Valley Parkway, Malvern, Pennsylvania 19355, U.S.A. [†]Willowburn Avenue, Alnwick, Northumberland NE66 2JH, England

(Received for publication November 8, 1993)

Asperlicin (1), a competitive cholecystokinin (CCK) antagonist, produced from *Aspergillus alliaceus*, was originally characterized primarily by means of X-ray crystallography.^{1~3)} The compound contains a 1,4-benzodiazepine ring with a quinazolone fused to the 1,2-positions, and a 3-substituted moiety condensed from tryptophan and leucine. This was the first reported naturally occurring nonpeptide antagonist of a peptide receptor. Subsequently, several possible therapeutically useful CCK antagonists were synthesized based on the benzodiazepine nucleus of asperlicin.⁴⁾ Furthermore, benzodiazepines represent an important class of drugs which are widely used as anti-anxiety agents and hypnotics.⁵⁾

We have recently isolated a series of substance P antagonists, benzomalvins A (2), B and C, from a *Penicillium* sp.⁶⁾ Structural studies using 2D NMR clearly demonstrated that the benzomalvins possess

the same quinazolino-benzodiazepine-dione ring skeleton as in asperlicin (1). The structure of 2 was confirmed through total synthesis.⁶⁾ Comparison of ¹H and ¹³C NMR spectral data of benzomalvins with literature values for asperlicin,³⁾ however, showed discrepancies among NMR assignments. In order to resolve this issue and to provide a basis for future structural assignments of new compounds of this general class, we have carried out a detailed NMR analysis leading to unambiguous assignments of both ¹H and ¹³C data for asperlicin, reported herein.

The ¹H NMR spectrum of 1 in CDCl₃ - CD₃OD (4:1) showed the presence of 2 methyls, 2 methylenes, 4 methines and 12 well-resolved aromatic protons. A double quantum filtered phase sensitive COSY experiment⁷⁾ revealed ¹H-¹H couplings and established ¹H assignments for a 3-methyl-butyl group (32-H \sim 36-H), a >CH-CH₂segment (19-H \sim 20-H) and 3 di-substituted benzene moieties. Thus, the remaining methine singlet at δ 5.49 is assigned to 29-H. The ¹³C NMR studies and a DEPT experiment revealed resonances for all 31 carbons including 12 protonated and 10 nonprotonated sp^2 carbons, 2 methyls, 2 methylenes, 4 methines and 1 quaternary carbon. A 2D ¹Hdetected HMQC experiment⁸⁾ yielded ¹³C-¹H direct connectivities and established the corresponding ¹³C chemical shifts for the protonated moieties described above.

Further ¹³C δ assignments of 3 di-substituted benzene moieties and 11 non-protonated carbons were achieved by an HMBC experiment,⁹⁾ whereby

Fig. 1. Structures of asperlicin (1) and benzomalvin A (2), and HMBC-derived correlations for non-protonated carbons in 1.

Atom No.	¹³ C (m)	¹ H (m, <i>J</i>)	HMBC coupled H No.
2	168.4 (s)		4-H, 19-H
3	130.4 (s)	_	5-H, 7-H
4	129.9 (d)	7.96 (dd, 7.5, 1.7)	6-H
5	129.3 (d)	7.66 (br dd, 7.5, 7.5)	7-H
6	127.8 (d)	7.69 (ddd, 7.5, 7.5, 1.7)	7-H
7	128.6 (d)	7.58 (br d, 7.5)	5-H
8	133.7 (s)		4-H, 5-H, 6-H, 7-H
10	162.2 (s)	_	12-H
11	121.3 (s)		13-H, 15-H
12	127.4 (d)	8.27 (dd, 7.9, 1.0)	13-H, 14-H
13	128.0 (d)	7.55 (ddd, 7.9, 7.9, 1.0)	
14	135.3 (d)	7.82 (ddd, 7.9, 7.9, 1.0)	12-H
15	131.8 (d)	7.67 (br d, 7.9)	
16	146.3 (s)		12-H, 14-H
18	155.3 (s)	_	19-H, 20-H
19	50.7 (d)	4.56 (dd, 9.3, 4.8)	20-H
20	34.5 (t)	2.58 (dd, 15.5, 4.8),	19-H, 29-H
		2.71 (dd, 15.5, 9.3)	
21	80.9 (s)		19-H, 20-H, 23-H
22	139.6 (s)	_	20-H, 24-H, 26-H
23	124.0 (d)	7.23 (br d, 7.5)	25-H
24	126.0 (d)	7.09 (br dd, 7.5, 7.5)	26-H
25	129.8 (d)	7.27 (br dd, 7.5, 7.5)	23-H
26	115.9 (d)	7.48 (br dd, 7.5)	24-H
27	136.3 (s)		23-H, 25-H
29	86.8 (d)	5.49 (s)	20-H
31	171.4 (s)	—	32-Н, 33-Н
32	62.0 (d)	4.25 (dd, 10.4, 3.3)	33-H
33	42.9 (t)	1.51 (ddd, 12.5, 10.4, 4.3),	32-H
		1.73 (ddd, 12.5, 9.5, 3.3)	
34	25.2 (d)	1.84 (m)	32-H, 33-H
35	23.6 (q)	0.90 (d, 6.4)	33-Н
36	21.4 (q)	0.95 (d, 6.4)	33-H

Table 1. ¹H and ¹³C NMR assignments of asperlicin (1).

the multiple bond ¹H-¹³C couplings necessary to connect non-protonated carbon atoms to protonated ones were observed. Starting from the >CH- CH_2 - segment (C-19~C-20), the methine proton (19-H, δ 4.56) was coupled to an amidine carbon (C-18, δ 155.3), an amide carbonyl (C-2, δ 168.4) and a quaternary carbon (C-21, δ 80.9); and its methylene protons (20-H, δ 2.58, 2.71) were coupled to C-18, establishing the δ values of C-2, C-18 and C-21. The ³J coupling of C-2 and 4-H in conjunction with the COSY and HMQC data led us to place δ values on protonated carbons (C-4~C-7) of a benzoic amide moiety. Similarly, ³J couplings of C-10~12-H, C-21~23-H and C-31~33-H resulted in δ assignments of protonated carbons of two other benzoid moieties (C-12~C-15 and C-23~C-26) and a carbonyl carbon (C-31). Furthermore, the chemical shifts of the remaining 6 non-protonated carbons (C-3, C-8, C-11, C-16, C-22 and C-27) of 3 di-substituted benzene rings were also assigned on the basis of the 3-bond couplings as depicted in 1. The re-assigned ¹H and ¹³C NMR data of 1, summarized in Table 1, are in excellent agreement with those of benzomalvins.⁶

Acknowledgement

Asperlicin was kindly provided by Merck Research Laboratories of Merck & Co. Inc., Rahway, NJ.

References

 CHANG, R. S.; V. J. LOTTI, R. MONAGHAN, J. BIRNBAUM, E. STAPLEY, M. GOETZ, G. ALBERS-SCHONBERG, A. PATCHETT, J. LIESCH, O. HENNENS & J. SPRINGER: A potent nonpeptide cholecystokinin antagonist selective for peripheral tissues isolated from Aspergillus alliaceus. Science 230: 177~179, 1985

- GOETZ, M. A.; M. LOPEZ, R. L. MONAGHAN, R. S. CHANG, V. J. LOTTI & T. B. CHEN: Asperlicin, a novel non-peptidal cholecystokinin antagonist from *Aspergillus alliaceus*. Fermentation, isolation and biological properties. J. Antibiotics 38: 1633 ~ 1637, 1985
- LIESCH, J. M.; O. D. HENSENS, J. P. SPRINGER, R. S. L. CHANG & V. J. LOTTI: Asperlicin, a novel non-peptidal cholecystokinin antagonist from *Aspergillus alliaceus*. Structure elucidation. J. Antibiotics 38: 1638 ~ 1641, 1985
- BERLIN, R. G. and R. M. FREIDINGER: CCK Antagonists in Gastroenterology. *Eds. G. ALDER and* C. BEGLINGER, Springer-Verlag, Heidelberg, 70, 1991
- SNEADER, W.: Drug discovery. In The Evolution of Modern Medicines, pp. 34, 183~185, J. Wiley and Sons, Chichester, 1985
- 6) SUN, H. H.; C. BARROW, D. M. SEDLOCK, A. M.

GILLUM & R. COOPER: Benzomalvins, new substance P inhibitors from a *Penicillium* sp. J. Antibiotics 47: 515 ~ 522, 1994

- MARION, D.; K. WUTHRICH: Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of ¹H-¹H spin-spin coupling constants in proteins. Biochem. Biophys. Res. Commun. 113: 967~974, 1983
- BAX, A.; S. SUBRAMANIAN: Sensitivity-enhanced two-dimensional heteronuclear shift correlation NMR spectroscopy. J. Magn. Reson, 67: 565~569, 1986
- BAX, A.; M. F. SUMMERS: ¹H and ¹³C assignments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR. J. Am. Chem. Soc. 108: 2093 ~ 2094, 1986